Two-dimensional chemotherapy simulations demonstrate fundamental transport and tumor response limitations involving nanoparticles.

نویسندگان

  • J Sinek
  • H Frieboes
  • X Zheng
  • V Cristini
چکیده

Zheng et al. (2004) developed a multiscale, two-dimensional tumor simulator with the capability of showing tumoral lesion progression through the stages of diffusion-limited dormancy, neo-vascularization (angiogenesis) and consequent rapid growth and tissue invasion. In this paper we extend their simulator to describe delivery of chemotherapeutic drugs to a highly perfused tumoral lesion and the tumor cells' response to the therapy. We perform 2-D simulations based on a self-consistent parameter estimation that demonstrate fundamental convective and diffusive transport limitations in delivering anticancer drug into tumors, whether this delivery is via free drug administration (e.g., intravenous drip), or via 100 nm nanoparticles injected into the bloodstream, extravasating and releasing the drug that then diffuses into the tumoral tissue, or via smaller 1-10 nm nanoparticles that are capable of diffusing directly and targeting the individual tumor cell. Even in a best-case scenario involving: constant ("smart") drug release from the nanoparticles; a homogenous tumor of one cell type, which is drug-sensitive and does not develop resistance; targeted nanoparticle delivery, with resulting low host tissue toxicity; and for model parameters calibrated to ensure sufficient drug or nanoparticle blood concentration to rapidly kill all cells in vitro ; our analysis shows that fundamental transport limitations are severe and that drug levels inside the tumor are far less than in vitro , leaving large parts of the tumor with inadequate drug concentration. A comparison of cell death rates predicted by our simulations reveals that the in vivo rate of tumor shrinkage is several orders of magnitude less than in vitro for equal chemotherapeutic carrier concentrations in the blood serum and in vitro, and after some shrinkage the tumor may achieve a new mass equilibrium far above detectable levels. We also demonstrate that adjuvant anti-angiogenic therapy "normalizing" the vasculature may ameliorate transport limitations, although leading to unwanted tumor fragmentation. Finally, our results suggest that small nanoparticles equipped with active transport mechanisms (e.g., chemotaxis) would overcome the predicted limitations and result in improved tumor response.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational simulations of nanoparticle transport in a three-dimensional capillary network

Objective(s): Multifunctional nanomedicine is the new generation of medicine, which is remarkably promising and associated with the minimum toxicity of targeted therapy. Distribution and transport of nanoparticles (NPs) in the blood flow are essential to the evaluation of delivery efficacy. Materials and Methods: In the present study, we initially designed a phantom based on Murray’s mini...

متن کامل

Numerical study of induction heating by micro / nano magnetic particles in hyperthermia

Hyperthermia is one of the first applications of nanotechnology in medicine by using micro/nano magnetic particles that act based on the heat of ferric oxide nanoparticles or quantum dots in an external alternating magnetic field. In this study, a two-dimensional model of body and tumor tissues embedded is considered. Initially, the temperature distribution is obtained with respect to tumor pro...

متن کامل

Magnetic Graphene Oxide Nanocarrier as a drug delivery vehicle for MRI monitored magnetic targeting of rat brain tumors

Introduction: Glioblastoma multiform is the most common malignant brain tumor, with an invasive nature. Despite the development of conventional therapies such as surgery, radiotherapy and chemotherapy, because of high recurrence rates, the prognosis remains very poor. Over the last decade, nanotechnology has represented an innovative method as nanoparticle-based drug delivery ...

متن کامل

COMPARATIVE STUDY OF CHEMORADIATION AND NEOADJUV ANT CHEMOTHERAPY BEFORE RADICAL HYSTERECTOMY IN STAGE m - 1m BULKY CERVICAL CANCER AND WITH TUMOR DIAMETER GREATER THAN 4 CM

Tumor size seems to be a determinant in the prognosis of early cervical cancer. Patients with tumor size greater than 4 cm (bulky) in diameter have worse outcome.' The purpose of this study was to compare the efficacy of preoperative combined chemoradiation and neoadjuvant chemotherapy (NArC) programs followed by radical hysterectomy in stage Ib - lIb bulky cervical cancer. From September ...

متن کامل

Association of tumor infiltration lymphocytes and complete pathological response in breast cancer patients under neoadjuvant chemotherapy

Background: The breast cancer is the most common type of cancer in Iran. Hence determination of the optimal treatment and the contributing factors are important. The main aim in current study was to determine the association between tumor infiltration of lymphocytes (TIL) and complete pathological response in breast cancer patients after neoadjuvant chemotherapy. Methods and materials: In this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomedical microdevices

دوره 6 4  شماره 

صفحات  -

تاریخ انتشار 2004